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a b s t r a c t

Stability is one of the main concerns in the lattice Boltzmann method (LBM). The objectives
of this study are to investigate the linear stability of the lattice Boltzmann equation with
the Bhatnagar–Gross–Krook collision operator (LBGK) for the advection–diffusion equation
(ADE), and to understand the relationship between the stability of the LBGK and non-neg-
ativity of the equilibrium distribution functions (EDFs). This study conducted linear stabil-
ity analysis on the LBGK, whose stability depends on the lattice Peclet number, the Courant
number, the single relaxation time, and the flow direction. The von Neumann analysis was
applied to delineate the stability domains by systematically varying these parameters.
Moreover, the dimensionless EDFs were analyzed to identify the non-negative domains
of the dimensionless EDFs. As a result, this study obtained linear stability and non-negativ-
ity domains for three different lattices with linear and second-order EDFs. It was found that
the second-order EDFs have larger stability and non-negativity domains than the linear
EDFs and outperform linear EDFs in terms of stability and numerical dispersion. Further-
more, the non-negativity of the EDFs is a sufficient condition for linear stability and
becomes a necessary condition when the relaxation time is very close to 0.5. The stability
and non-negativity domains provide useful information to guide the selection of dimen-
sionless parameters to obtain stable LBM solutions. We use mass transport problems to
demonstrate the consistency between the theoretical findings and LBM solutions.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The lattice Boltzmann method (LBM) is a mesoscopic numerical method that simulates macroscopic fluid dynamics based
on mesoscopic kinetic equations [1]. Developed as an improvement of the lattice gas automata (LGA) [2], the LBM has re-
ceived great attention not only in hydrodynamic problems, but also in mass transport problems, e.g. the reaction–diffusion
equation [3], the contaminant transport equation [4], and coupled density-dependent flow and heat/mass transfer problem
[5,6]. Most studies using the LBM have focused on the lattice Boltzmann equation with the Bhatnagar–Gross–Krook collision
operator [7] (LBGK), and this will be the focus of our study.

The numerical stability of the LBM still remains a challenge because it involves linear and non-linear stability. While the
linear stability analysis might be sufficient to analyze stability when hydrodynamic gradients are weak, it is not sufficient in
the general case where hydrodynamic gradients can lead to non-linear instabilities.

One of the earliest works that investigated the stability problem in the LBM was provided by Sterling and Chen [8], where
the LBGK was linearized for the fluctuating quantities of particle distribution functions with respect to the equilibrium
. All rights reserved.
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distribution functions (EDFs). The von Neumann analysis was carried out to identify the most unstable directions and wave
numbers, and their relationship with the mean flow field, relaxation time, and mass distribution parameters. Worthing et al.
[9] extended the work of Sterling and Chen [8] to non-uniform flows. In particular, the case of a shear background flow was
studied and some stability boundaries were found.

In order to improve the stability of the LBM, several approaches have been introduced. The entropic LBM (ELBM) consid-
ers that the instability arises from violating the second law of thermodynamics. Therefore, inclusion of the H theorem in the
LBM was suggested to ensure positive production of entropy [10,11]. The equilibrium state in the ELBM is not explicitly
needed since the collision integral can be formulated based on knowledge of the H function [12]. To ensure the implemen-
tation of the H theorem, one must first find the kinetic state after collision that does not increase entropy during the collision
process, and this kinetic state fixes a limit for the new state after the collision. The ELBM provides unconditional stability
[13], but was computationally expensive because the isentropic state must be obtained by solving a non-linear equation
at each lattice and at every time step [14]. In Chikatamarla et al. [15], an analytical solution to the collision step was found,
improving the efficiency of the ELBM.

Comparisons between the LBGK and ELBM show that the ELBM is more stable and allows increasing the Reynolds number
[16]. Despite the increase of stability, the ELBM still suffers from spurious oscillations in regions with strong hydrodynamic
gradients, such as shock waves [17]. However, a great reduction of the spurious oscillations in the ELBM can be achieved by
selecting proper lattice velocities to retain complete Galilean invariance [18].

Improving stability can also be achieved by enforcing the non-negativity of particle distributions. Li et al. [19] introduced
a FIX-UP method, which consist of increasing the relaxation time in the LBGK to the minimum value that ensured non-neg-
ativity of all particle distribution functions after the collision. Tosi et al. [20] compared the stability behavior of the ELBM and
FIX-UP methods with the traditional LBGK, and both methods showed improved stability. While the computational cost is
double for the ELBM with respect to the FIX-UP method in one single time step, the ELBM allows increasing the Reynolds
number by about an order of magnitude, which makes the ELBM more suitable for high Reynolds number flows.

Brownlee et al. [21] introduced the idea of Enrenfests’ steps, in which artificial viscosity is added by returning the particle
distributions to their equilibrium states in those points where the variation of entropy between the kinetic state after the
collision and the equilibrium state is superior to some threshold. This idea evolved to the concept of the entropy limiters
[22], where the particles are smoothly relaxed to their equilibrium based on deviations of entropy from the equilibrium con-
sidering also the entropy deviation at the neighbor nodes.

The multi-relaxation times (MRT) method has also shown improvement on the stability of the LBM [23,24]. The main dif-
ference of the MRT over the LBGK is that all the particle distributions are not relaxed to the equilibrium state at the same
rate. A particular case of MRT is the two relaxation times (TRT), which has been applied to solve mass transport equations
and is capable of reducing numerical instabilities [25].

In this work, we focus on the stability of the LBM when solving the advection–diffusion equation (ADE). To our knowl-
edge, the stability problem of using the LBGK to solve the ADE has not been fully discussed, and the aforementioned methods
have mainly focused on hydrodynamics equations. To date, no clear stability boundaries have been provided for the LBGK
when solving the ADE.

In this study, we carry out linear stability analysis of the LBGK and investigate the relationship between the stability of
LBGK and the non-negativity of EDFs since some studies have reported that negative values of the EDFs could quickly lead to
numerical instability [26,27]. Linear stability analysis is suitable and can provide insightful information when the hydrody-
namic gradients are weak and the flow varies slowly in time (e.g. flows in porous media). Suga [28] carried out linear stability
analysis on the LBGK for the ADE, and delineated stability boundaries for several two-dimensional lattices. However, only
linear EDFs were considered and the ratio between the lattice speed and the speed of sound was constrained to a specific
value, which creates a dependency among the lattice Peclet number, the Courant number, and the relaxation time. In this
study, we eliminate this constraint and investigate the linear stability analysis and non-negativity of EDFs in three different
lattices. We found that it is crucial for the linear stability and non-negativity analyses to identify the dimensionless param-
eters locally governing the LBGK.

The rest of this paper is organized as follows: Section 2 formulates the dimensionless EDFs in terms of a scaled Peclet
number, Courant number, relaxation time, and flow direction. Section 3 derives non-negative domains for three different lat-
tices and two types of EDFs. Section 4 introduces the linear stability analysis of the LBGK. Section 5 implements the linear
stability analysis on the LBGK to delineate stability domains and compares them to the non-negative domains. Section 6
implements numerical examples to validate the stability and non-negativity domains found in Section 5. Section 7 concludes
this study.
2. Dimensionless analysis in LBM

2.1. LBM with Bhatnagar–Gross–Krook (BGK) collision operator

The LBM was first developed to solve the equations of hydrodynamics based on the kinetic theory of gases described by
the Boltzmann equation. The discrete Boltzmann equation for describing dynamics of local particle distribution functions in
a discrete velocity field is



238 B. Servan-Camas, F.T.-C. Tsai / Journal of Computational Physics 228 (2009) 236–256
ofi

ot
þ ci � rfi ¼ Xi ð1Þ
where fi(x, t) is the particle distribution function moving along the i direction at position x and time t, ci is the streaming
velocity along the direction, and Xi is the change due to the particle collision. Each direction represents a characteristic direc-
tion for the corresponding particle distribution function. In each time step, the particle distribution functions arrive at their
neighboring nodes at the same time through prescribed lattice connections. Therefore, the streaming velocity ci along the i
direction is not arbitrary and is determined by the lattice connection and size. The lattice Boltzmann equation is obtained by
integrating Eq. (1) in time along the i direction. This yields [29]
fiðx; t þ DtÞ ¼ fiðx� ciDt; tÞ þ DtXi ð2Þ
where Dt is the time step. The BGK collision operator is [7]
DtXi ¼ �
1
s
ðfiðx� ciDt; tÞ � f eq

i ðx; t þ DtÞÞ ð3Þ
where s is the single relaxation time and f eq
i are the equilibrium distribution functions (EDFs). Therefore, the LBGK becomes
fiðx; t þ DtÞ ¼ fiðx� ciDt; tÞ � 1
s
ðfiðx� ciDt; tÞ � f eq

i ðx; t þ DtÞÞ: ð4Þ
Eq. (4) represents the evolution of the particle distribution functions through the streaming and collision steps, where con-
servations of physical quantities at lattice nodes must be satisfied. A general expression of the EDFs f eq

i up to the second-or-
der can be obtained using the Ansatz method as follows [26]:
f eq
i ¼ qxiðBi0 þ Bi1u � ci þ Bi2ðu � ciÞ2 þ Bi3ðu � uÞÞ ð5Þ
where xi, Bi0, Bi1, Bi2, and Bi3 are obtained by imposing lattice symmetries, and the following constraints for the zero, first,
and second moments of EDFs in the phase space
X

i

f eq
i ¼ q ð6Þ

X
i

f eq
i cin ¼ qun ð7Þ

X
i

f eq
i cincig ¼ qðdngc2

S þ unugÞ ð8Þ
where n and g represent the Cartesian indexes, dng is the Kronecker delta, cS is the numerical speed of sound when solving
hydrodynamics and a numerical parameter related to the diffusion coefficient when solving the advection–diffusion equa-
tion (ADE), u represents flow velocity, and q represents density in the hydrodynamic problem and concentration in the mass
transport problem. The expressions for the EDFs are given by
f eq
i ¼ qxi

c2
S

c2 þ
u � ci

c2 þ
3
2
ðu � ciÞ2

c4 � 1
2

u � u
c2

 !
i > 0 ð9Þ

f eq
0 ¼ q�

X
i>0

f eq
i ð10Þ
where c = Dx/Dt is the lattice speed, and xi are the weighting factors that depend on lattice directions and the type of lattice
to be used. Fig. 1 shows an example of a two-dimensional lattice with nine directions (D2Q9). Eq. (9) can also be derived as a
Taylor expansion of the Maxwell–Boltzmann distribution up to second-order in the Mach number [1] or as a Taylor expan-
sion up to second-order in Mach number around the kinetic states that minimize an H function [11].

2.2. Dimensionless equilibrium distribution functions

For the purpose of convenience, we introduce dimensionless EDFs, defined as geq
i ¼ f eq

i =q. Let ei = ci/c and eu = u/juj, where
eu is the unit vector along the direction of the macroscopic velocity, and e0 = 0. The angle a = arc cos(eu � e1) is defined as the
angle of the flow velocity with respect to the lattice grid in two dimensions, and is shown in Fig. 1. Using ei and eu in Eq. (9),
the dimensionless EDFs become
geq
i ¼ xi

c2
S

c2 þ
juj
c
ðei � euÞ þ

juj2

c2

3
2
ðei � euÞ2 �

1
2

� � !
i > 0 ð11Þ

geq
0 ¼ 1�

X
i>0

geq
i ð12Þ
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Fig. 1. D2Q9 lattice and flow direction.
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The diffusion coefficient D is recovered in the LBM as follows:
D ¼ c2
SDt s� 1

2

� �
ð13Þ
Eq. (13) is the same as in Flekkøy [30] when considering lattice units (Dx = 1 and Dt = 1) and c=cS ¼
ffiffiffi
3
p

. However, the con-
straint c=cS ¼

ffiffiffi
3
p

is not necessary for the mass transport problem.
This study focuses on the non-negativity of the dimensionless EDFs and the linear stability of the LBGK applied to the

ADE. Therefore, the lattice Peclet number PeDx = jujDx/D and the Courant number Cr = juj/c = jujDt/Dx are introduced into
Eq. (11). Substituting the lattice Peclet number, the Courant number, and Eq. (13) into Eq. (11), the dimensionless EDFs
become
geq
i ¼ xi

Cr
PeDxðs� 1=2Þ þ Crðeu � eiÞ þ Cr2 3

2
ðeu � eiÞ2 �

1
2

� �� �
i > 0 ð14Þ
According to Eq. (14), the non-negativity of geq
i is explicitly influenced by four dimensionless parameters: the lattice Pec-

let number, the Courant number, the relaxation time, and the flow direction, denoted as (PeDx,Cr,s,a). Moreover, we intro-
duce the scaled Peclet number, defined as Pe�Dx ¼ PeDxðs� 1=2Þ to consider the product effect of the lattice Peclet number
and the relaxation time. Using Pe�Dx instead of PeDx allows us to explicitly find the minimum value of the relaxation time that
ensures stable solutions for given values of Pe�Dx, Cr, and a in the later linear stability analysis. Introducing
Pe�Dx ¼ PeDxðs� 1=2Þ into Eq. (14), we obtain
geq
i ¼ xi

Cr
Pe�Dx

þ Crðeu � eiÞ þ Cr2 3
2
ðeu � eiÞ2 �

1
2

� �� �
i > 0 ð15Þ
In short, the non-negativity and stability analyses will be based on the parameter space
Q
¼ ðPe�Dx;Cr; s;aÞ for the ADE.

If solving the hydrodynamics equations, the following relationship between the kinematic viscosity and the numerical
parameters of the LBM holds [1]
m ¼ c2

3
Dt s� 1

2

� �
ð16Þ
where m is the kinematic viscosity of the fluid. It is convenient to use the lattice Reynolds number ReDx = jujDx/m and the
Mach number M = juj/cS to analyze the dimensionless EDFs
geq
i ¼ xi

ðs� 1=2Þ2

9
Re2

Dx

M2 þ
ðs� 1=2Þ

3
ReDxðeu � eiÞ þ

ðs� 1=2Þ2

9
Re2

Dx
3
2
ðeu � eiÞ2 �

1
2

� � !
i > 0: ð17Þ
In this case, the dimensionless EDFs are governed by four parameters: the lattice Reynolds number, the Mach number, the
relaxation time, and the flow direction, denoted as (ReDx,M,s,a). For the purpose of the stability analysis, we can also use the
scaled Reynolds number Re�Dx ¼ ReDxðs� 1=2Þ to find the minimum value of the relaxation time to derive stable solutions for
given values of Re�Dx, M, and a. Using the scaled Reynolds number, Eq. (17) becomes
geq
i ¼ xi

Re�Dx
2

9M2 þ
Re�Dx

3
ðeu � eiÞ þ

Re�Dx
2

9
3
2
ðeu � eiÞ2 �

1
2

� � !
i > 0 ð18Þ
Given the four parameters,
Q
¼ ðRe�Dx;M; s;aÞ, the non-negativity of geq

i and the stability of the LBGK can be determined.
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Eq. (11) provides a general form of the dimensionless EDFs that can be used to perform non-negative and stability anal-
yses for both hydrodynamic and mass transport problems. In other words, once the non-negativity and linear stability anal-
yses are carried out for the ADE using Eq. (15), the stability set for

Q
¼ ðPe�Dx;Cr; s;aÞ can be transformed into the stability setQ

¼ ðRe�Dx;M; s;aÞ through the following relationships:
Re�Dx ¼ 3Cr ð19Þ

M2 ¼ CrPe�Dx ð20Þ
Since this work focuses on the non-negativity and stability analyses of the ADE and therefore, we will use the parameter
space given by

Q
¼ ðPe�Dx;Cr; s;aÞ.
3. Non-negativity analysis of equilibrium distribution functions

This section analyzes the sufficient conditions in terms of Pe�Dx and Cr for obtaining non-negative values of the second-
order EDFs in a D2Q9 lattice given by Eqs. (12) and (15) for any directions of the macroscopic velocity u. Let SD2Q9

NL be the
set of ðPe�Dx;CrÞ that is conditioned on the non-negativity of second-order EDFs for any flow directions:
SD2Q9
NL ¼ ðPe�Dx;CrÞjPe�Dx > 0; Cr > 0; 8 a 2 ½0;2p�; 8 i : geq

i ðPe�Dx;CrÞP 0
� �

ð21Þ
where a is the angle between u and c1 shown in Fig. 1. Due to the symmetry of the lattice directions, we can reduce our
analysis to the range a 2 [0,p/4]. Any flow direction will give the same result for an angle in [0,p/4] after reordering the lat-
tice velocities ci. Therefore, Eq. (21) is rewritten as
SD2Q9
NL ¼ ðPe�Dx;CrÞjPe�Dx > 0; Cr > 0; 8 a 2 ½0;p=4�; 8i : geq

i ðPe�Dx;CrÞP 0
� �

: ð22Þ
Consider the set of ðPe�Dx;CrÞ from individual non-negative EDFs:
Si ¼ ðPe�Dx; CrÞjPe�Dx > 0; Cr > 0; 8 a 2 ½0;p=4�; geq
i ðPe�Dx;CrÞP 0

� �
: ð23Þ
Eq. (22) represents the intersection of all Si, i.e., S ¼
T8

i¼0Si. For D2Q9, we have ei = cos(bi), sin(bi)) with bi = (i � 1)p/2 for
i = 1,2,3,4, and ei ¼

ffiffiffi
2
p
ðcosðbiÞ; sinðbiÞÞ with bi = p/4 + (i � 5)p/2 for i = 5,6,7,8, and eu = (cos(a),sin(a)) Inserting ei � eu into

Eq. (15), we obtain the dimensionless EDFs for a given flow direction a:
geq
1 ¼

1
3

Cr
Pe�Dx

þ Cr cos aþ Cr2 3
2

cos2 a� 1
2

� �� �
ð24Þ

geq
2 ¼

1
3

Cr
Pe�Dx

þ Cr sinaþ Cr2 3
2

sin2 a� 1
2

� �� �
ð25Þ

geq
3 ¼

1
3

Cr
Pe�Dx

� Cr cos aþ Cr2 3
2

cos2 a� 1
2

� �� �
ð26Þ

geq
4 ¼

1
3

Cr
Pe�Dx

� Cr sinaþ Cr2 3
2

sin2 a� 1
2

� �� �
ð27Þ

geq
5 ¼

1
12

Cr
Pe�Dx

þ Crðcos aþ sin aÞ þ Cr2 3
2
ðcos aþ sinaÞ2 � 1

2

� �� �
ð28Þ

geq
6 ¼

1
12

Cr
Pe�Dx

þ Crð� cos aþ sinaÞ þ Cr2 3
2
ð� cos aþ sinaÞ2 � 1

2

� �� �
ð29Þ

geq
7 ¼

1
12

Cr
Pe�Dx

� Crðcos aþ sin aÞ þ Cr2 3
2
ðcos aþ sinaÞ2 � 1

2

� �� �
ð30Þ

geq
8 ¼

1
12

Cr
Pe�Dx

þ Crðcos a� sin aÞ þ Cr2 3
2
ðcos a� sinaÞ2 � 1

2

� �� �
ð31Þ
Because we only need to study the EDFs witha 2 [0,p/4], the values cosa 2 ½
ffiffiffi
2
p

=2;1�, sin a 2 ½0;
ffiffiffi
2
p

=2�, and
cos(a) � sin(a) 2 [0,1]. Then Eqs. (24)–(31) render the relations: geq

1 P geq
3 , geq

2 P geq
4 , geq

5 P geq
7 , and geq

8 P geq
6 . Therefore,

S3 � S1, S4 � S2, S7 � S5, S6 � S8, and S = S0 \ S3 \ S4 \ S6 \ S7. Let S* be S3 \ S4 \ S6 \ S7. Then SD2Q9
NL ¼ S0 \ S�.
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3.1. Calculation of S0

By definition, S0 is the domain where geq
0 is non-negative:
S0 ¼ ðPe�Dx; CrÞjPe�Dx > 0; Cr > 0; 8 a 2 ½0;p=4�; geq
0 ðPe�Dx;CrÞP 0

� �
ð32Þ
where for D2Q9, geq
0 is
geq
0 ¼ 1� 5

3
Cr

Pe�Dx
� 2

3
Cr2: ð33Þ
Then, g0 P 0 if and only if 3Pe�Dx � 5Cr � 2Cr2Pe�Dx P 0 and
S0 ¼ ðPe�Dx;CrÞjPe�Dx > 0; Cr > 0; 3Pe�Dx � 5Cr � 2Cr2Pe�Dx P 0
n o

: ð34Þ
3.2. Calculation of S*

Since the weighting factors xi are positive by definition, for "a 2 [0,p/4] the set S* can be redefined as
S� ¼ ðPe�Dx; CrÞjPe�Dx > 0; Cr > 0;
Cr

Pe�Dx
� Crki þ Cr2 3

2
k2

i �
1
2

� �
P 0; i ¼ 3;4;6;7

� �
ð35Þ
where ki = ei � eu. Hence, k3 = cosa, k4 = sina, k6 = cosa � sina, and k7 = cosa + sina. Because a 2 [0,p/4], we have
k3 2 ½

ffiffiffi
2
p

=2;1�, k4 2 ½0;
ffiffiffi
2
p

=2�, k6 2 [0,1], and k7 2 ½1;
ffiffiffi
2
p
�. Therefore, S* becomes
S� ¼ ðPe�Dx;CrÞjPe�Dx > 0; Cr > 0; 8k 2 ½0;
ffiffiffi
2
p
� : hðPe�Dx;Cr; kÞP 0

n o
ð36Þ
where hðPe�Dx;Cr; kÞ ¼ Cr=Pe�Dx � Crkþ Cr2ð3k2=2� 1=2Þ. According to Eq. (36), S* is bounded by the curve
hðPe�Dx;Cr; k ¼

ffiffiffi
2
p
Þ ¼ 0 and the envelope of the parametric family of curves hðPe�Dx;Cr; kÞ ¼ 0 whose parameter is

k 2 ½0;
ffiffiffi
2
p
�. The curve hðPe�Dx;Cr; k ¼

ffiffiffi
2
p
Þ ¼ 0 is defined by the following equation:
2� 2
ffiffiffi
2
p

Pe�Dx þ 5Pe�DxCr ¼ 0 ð37Þ
To obtain the equation of the envelope, we need to eliminate k in hðPe�Dx;Cr; kÞ ¼ 0 via hkðPe�Dx;Cr; kÞ ¼ dh=dk ¼ 0, which
gives the value of k* = 1/(3Cr). Introducing k* into hðPe�Dx;Cr; kÞ ¼ 0, we obtain the equation of the enveloping curve:
Pe�Dx þ 3Cr2Pe�Dx � 6Cr ¼ 0: ð38Þ
The intersection of the envelope curve and hðPe�Dx;Cr; k ¼
ffiffiffi
2
p
Þ ¼ 0 is at Pe�Dx ¼ 1:202 and Cr = 0.233. Thus, the set S* is ob-

tained for any k 2 ½0;
ffiffiffi
2
p
�:
S� ¼ ðPe�Dx;CrÞ
Pe�Dx > 0;Cr > 0

6Cr � Pe�Dx � 3Cr2Pe�Dx P 0; if Cr > 0:233

2� 2
ffiffiffi
2
p

Pe�Dx þ 5Pe�DxCr P 0; if Cr 6 0:233

							
8><
>:

9>=
>;: ð39Þ
3.3. Calculation of S

From Eqs. (34) and (39), the set SD2Q9
NL is obtained as the intersection of S0 and S*:
SD2Q9
NL ¼ ðPe�Dx;CrÞ

Pe�Dx > 0;Cr > 0

3Pe�Dx � 5Cr � 2Cr2Pe�Dx P 0

6Cr � Pe�Dx � 3Cr2Pe�Dx P 0; if Cr > 0:233

2� 2
ffiffiffi
2
p

Pe�Dx þ 5Pe�DxCr P 0; if Cr 6 0:233

										

8>>>><
>>>>:

9>>>>=
>>>>;
: ð40Þ
Fig. 2 shows the non-negativity domain for all EDFs regardless of the flow directions. The non-negativity domain is
bounded by geq

0 ðPe�Dx;CrÞ ¼ 0, the envelope of the parametric family of curves hðPe�Dx;Cr; kÞ ¼ 0 for k 2 ½0;
ffiffiffi
2
p
�, and the curve

hðPe�Dx;Cr; k ¼
ffiffiffi
2
p
Þ ¼ 0. Outside the non-negativity domain S, negative values for at least one dimensionless EDF can be ob-

tained for some specific flow directions. Hence, to be inside the domain S is a sufficient condition for non-negativity.
Using linear EDFs (neglecting the second-order terms in velocity in Eqs. (11), (12)) has been suggested for solving the ADE

in some specific cases, such as low Courant number [30] and slowly varying solutions [31]. Hence, we are also interested in
investigating the non-negativity and stability when using linear EDFs.

Using the same procedures, the non-negative domains for the D1Q3 lattice with linear and second-order EDFs, and for the
D2Q5 and D2Q9 lattices with linear EDFs, are derived in Appendix A. The results are the following:
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3.3.1. D1Q3 and linear EDFs
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3.3.2. D1Q3 and second-order EDFs

�		8 9

SD1Q3

NL ¼ ðPe�Dx;CrÞ
PeDx > 0;Cr > 0

Pe�Dx � Cr � Pe�DxCr2 P 0
1� Pe�Dx þ Pe�DxCr P 0

					
><
>:

>=
>; ð42Þ
3.3.3. D2Q5 and linear EDFs
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3.3.4. D2Q9 and linear EDFs
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4. Linear stability analysis of LBGK

In this section, we adopt the von Neumann analysis to study the LBGK (Eq. (4)). Due to the streaming step and mass con-
servation at the collision step, q(x,t + Dt) can be written as
qðx; t þ DtÞ ¼
X

j

fjðx� cjDt; tÞ ð45Þ
Introducing geq
i ðx; tÞ ¼ f eq

i ðx; tÞ=qðx; tÞ and Eq. (45) into Eq. (4), the LBGK becomes
fiðx; t þ DtÞ ¼ 1� 1
s

� �
fiðx� ciDt; tÞ þ 1

s
X

j

fjðx� cjDt; tÞ
 !

geq
i ðx; t þ DtÞ ð46Þ
In order to analyze the stability of Eq. (46), we consider the dimensionless EDFs to be constant in time and uniform in
space such that Eq. (46) becomes a linear system expressing the evolution of the particle distribution functions. Constant
and uniform dimensionless EDFs are obtained when the flow field is constant and uniform in the hydrodynamic and mass
transport problems. Although this is not the general case, the results of the linear stability analysis can provide fundamental
knowledge about the stability of the LBGK.

This approach was used by Suga [28] to study linear stability of the LBGK. Suga [28] applied the von Neumann analysis to
Eq. (46) for different lattices using linear EDFs and keeping a constant ratio between the lattice speed and the speed of sound.
Although in the hydrodynamic case this ratio has to be fixed to

ffiffiffi
3
p

, the ratio can vary when solving the ADE. In this study, we
allow this speed ratio to be any value, which will introduce an additional degree of freedom.

A discrete Fourier series solution for the particle distribution functions is introduced to perform the von Neumann
analysis
fiðx; tÞ ¼
X

m

bimðtÞe�Ikm �x ð47Þ
where I is the complex number, bim(t) represents the amplitude, and km represents the wave number. Introducing the Fourier
series solution into Eq. (46), for each wave number
bimðt þ DtÞ ¼ 1� 1
s

� �
bimðtÞe�Ikm �ci t þ 1

s
geq

i ðx� ciDt; tÞ
X

j

bjmðtÞe�Ikm �cjDt: ð48Þ
Eq. (48) can be written in a matrix form as follows:
bðt þ DtÞ ¼ AbðtÞ ð49Þ
where A = (1 � 1/s)M + (1/s)G, M is a diagonal matrix whose diagonal elements are given by Mii ¼ e�Ikm �ciDt , and the elements
of matrix G are given by Gij ¼ geq

i ðx� ciDt; tÞe�Ikm �cjDt . The matrix A reads:
A ¼ 1� 1
s

� � e�Ikm �c0Dt 0 � � � 0
0 e�Ikm �c1Dt � � � 0

� � � � � � . .
.

� � �
0 0 � � � e�Ikm �cQ�1Dt

0
BBBB@

1
CCCCAþ

1
s

geq
0 e�Ikm �c0Dt geq

0 e�Ikm �c1Dt � � � geq
0 e�Ikm �cQ�1Dt

geq
1 e�Ikm �c0Dt geq

1 e�Ikm �c1Dt � � � geq
1 e�Ikm �cQ�1Dt

� � � � � � . .
.

� � �
geq

Q�1e�Ikm �c0Dt geq
Q�1e�Ikm �c1Dt � � � geq

Q�1e�Ikm �cQ�1Dt

0
BBBBB@

1
CCCCCA
ð50Þ
where Q is the number of lattice velocities.
The matrix A is the amplification matrix of the linear system in Eq. (49). Therefore, the stability of the system depends on

the module of the eigenvalues of matrix A, and the LBGK will be stable as long as the module of all the eigenvalues is less
than unity for any wave number km.

5. Stability analysis for ADE

5.1. Stability analysis on D1Q3

In this section, the eigenvalue problem is solved for the one-dimensional lattice with three velocities, D1Q3. Since the
system has only three velocities (Q = 3), the matrix A is a 3 by 3 matrix. The eigenvalues of A are governed by the three
parameters

Q
¼ ðPe�Dx;Cr; sÞ, and the direction of the flow is given by either a = 0 or a = p in the one-dimensional case.

The dimensionless EDFs for D1Q3 are
geq
1 ¼

1
2

Cr
Pe�Dx

þ Cr þ Cr2
� �

; geq
2 ¼

1
2

Cr
Pe�Dx

� Cr þ Cr2
� �

; geq
0 ¼ 1� Cr

Pe�Dx
þ Cr2

� �
ð51Þ
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where geq
1 are the dimensionless EDFs for particles moving in the same direction as the flow, geq

2 is for particles moving in the
direction opposite the flow, and geq

0 represents resting particles. Due to the complexity of getting the eigenvalues of the
matrix A analytically as an explicit function of s, Pe�Dx, and Cr, they are obtained numerically. We use the dimensionless wave
number bn = kmxcjxDt = n2p/N, where n is from 1 to N, and N is the number of bn used in the analysis. Since the values of
the particle distribution functions are real numbers, the eigenvalue problem for km gives the same eigenvalue when solving
for �km.

In order to determine the stability domain, the number of dimensionless wave numbers used is N = 36. The eigenvalue
problem is solved twice, once based on the pairðPe�Dx; CrÞ and a second time based on (PeDx,Cr), using a grid of 100 by100
points in each case. We test different values of the relaxation time for s = 0.51, 0.6, 0.7, 0.8, 0.9, and 1.0.

Fig. 3(a) shows the stability domain in terms of Pe�Dx and Cr for s = 0.7. We observe that the stability domain is bounded by
two stability boundaries (stability boundary 1 and stability boundary 2). Stability boundary 1 corresponds to the condition
geq

0 ¼ 0. There is no direct relationship between stability boundary 2 and the non-negativity of the dimensionless EDFs. Actu-
ally, stability boundary 2 lies in the area where geq

2 < 0 for s = 0.7. Therefore, it can be concluded that negative EDF values do
not necessarily lead to instabilities. Fig. 3(b) shows that the stability domain grows with increasing relaxation time and that
the stability domain using a given value of relaxation time includes the stability domain found when using smaller values of
relaxation time.

The non-negativity domain for D1Q3 with second-order EDFs is also shown in Fig. 3(b), to be compared with the stability
domains. The non-negativity domain is bounded by two non-negativity boundaries, geq

0 ¼ 0 and geq
2 ¼ 0, obtained in Eq. (42).

Fig. 3 presents two important features. First, stability boundary 2 approaches the non-negativity boundary of geq
2 ¼ 0 as

the relaxation time decreases, and the non-negativity domain becomes the stability domain when the relaxation time is very
close to 0.5. Second, if the pair ðPe�Dx;CrÞ lies in the stability domain for a given value of the relaxation time, the pair also lies
in the stability domain if larger values of the relaxation time are used. In other words, given Pe�Dx and Cr values, there exists a
minimum value of the relaxation time s for stable solutions.

Fig. 4 redraws the stability domains provided by Fig. 3(b) in terms of PeDx and Cr. Because of the decoupling of the relax-
ation time from the lattice Peclet number, a larger value of the relaxation time does not necessarily result in stable solutions.
This shows the advantage of using Pe�Dx instead of PeDx for the analysis.

If only the linear terms are considered, the dimensionless EDFs become
a

Fig. 3.
bounda
geq
1 ¼

1
2

Cr
Pe�Dx

þ Cr
� �

; geq
2 ¼

1
2

Cr
Pe�Dx

� Cr
� �

; geq
0 ¼ 1� Cr

Pe�Dx
ð52Þ
Fig. 5 shows the stability boundaries for different values of relaxation time for the linear EDFs. The stability domain is
bounded by stability boundary 1 and stability boundary 2 for a given relaxation time. Stability boundary 1 is given by
geq

0 ¼ 0 and stability boundary 2 moves and enlarges the stability domain as the relaxation time increases. Comparing
Fig. 5 with Fig. 3(b), we can observe that the stability domains with second-order EDFs are larger than those with linear EDFs
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for a given s. In Karlin et al. [32], non-linear EDFs were also used resulting in more stable realizations. The non-negativity
domain with second-order EDFs is also much larger than when using linear EDFs, and as Pe�Dx increases, stable solutions will
only be found for low Courant numbers.
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5.2. Stability analysis on D2Q9 and D2Q5

In this section, we analyze the LBGK stability for the D2Q9 and D2Q5 lattices. We first consider D2Q9. Since both lattices
have symmetry with respect to the horizontal, vertical, and diagonal directions, we can reduce our study to the flow direc-
tion a 2 [0,p/4], and any other directions will be equivalent to the one in this interval.

The procedure is the same as in the one-dimensional case, but A is a 9 by 9 matrix. In this problem, the angle a
of the flow velocity with respect to the lattice grid will be an additional factor in the analysis. For different values
of
Q
¼ ðPe�Dx;Cr; s;aÞ, the eigenvalues of the matrix A are calculated numerically. When solving the eigenvalue prob-

lem numerically in 2D, we use the dimensionless wave number bn = kmxcjxDt and cp = kmycjyDt. Then, ex-
p(km � cjDt) = exp(bn)exp(cp), where bn = n2p/N and cp = p2p/N, and n and p go from 1 to N. N is the number of bn

and cp that we use.
Similar to the one-dimensional case, we test different values of the relaxation time, s = 0.51, 0.6, 0.7, 0.8, 0.9, and 1.0, to

determine the stability domain. The number of the dimensionless wave numbers used is N = 36. The eigenvalue problem is
solved twice based on the pairs ðPe�Dx;CrÞ and ðPe;DxCrÞ, using a grid of 100 by 100 points in each case.

The stability domains shown in Fig. 6 are for the D2Q9 lattice with second-order EDFs. For a specific flow direction
a = 22.5� (Fig. 6(a) and (b)), the non-negativity domain shown in Fig. 6(a) is delineated using Eqs. (34) and (35). Fig. 6(a)
shows growing stability domains based on Pe�Dx and Cr as the relaxation time increases. Moreover, we can observe that
the stability domain becomes the non-negativity domain when the relaxation time is very close to 0.5.

Similar to the one-dimensional case, given ðPe�Dx;Cr;aÞ in Fig. 6(a) there is a minimum value of the relaxation time for
stable solutions. However, if PeDx is used, the stability boundaries for different values of relaxation time can intersect
each other (Fig. 6(b)). Hence, given (PeDx,Cr,a), increasing the relaxation time does not guarantee a stable solution in
general.

Fig. 6(c) and (d) shows the domain resulting from the intersecting stability domains for five flow directions a = (i � 1)p/
16, i = 1,2, . . . ,5. The non-negativity domain in Fig. 6(c) is also obtained by considering intersections of the non-negativity
domains for those flow directions. Fig. 6(c) and (d) were obtained as an approximation to the stability domain for any direc-
tion of the flow, which would result from intersecting stability domains for "a 2 [0,p/4].

Next, we consider the case of neglecting the second-order terms in the EDFs. It is noted that D2Q5 with linear EDFs can
recover the same moments as D2Q9 with linear EDFs, and therefore the same macroscopic equation. This motivates our
interest in comparing these two lattices.

Fig. 7 shows the non-negativity and stability domains using linear EDFs for the D2Q5 and D2Q9 lattices with the five flow
directions a = (i � 1)p/16, i = 1,2, . . . ,5. The stability domains of the D2Q9 are slightly larger than those for D2Q5. However,
the D2Q9 non-negativity domain is slightly smaller than that for the D2Q5 lattice.

Comparing Fig. 7 with Fig. 6, we observe that second-order EDFs give larger non-negativity and stability domains than
those given by linear EDFs. Linear EDFs only offer stable solutions for low Courant numbers as Pe�Dx increases, while sec-
ond-order EDFs can produce stable solution at higher Courant numbers.
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6. Numerical examples

6.1. One-dimensional mass transport in uniform flow

This section presents numerical experiments to demonstrate the stability problem of using the LBGK to solve the one-
dimensional ADE. The governing equation for uniform flow is
oC
ot
þ U

oC
ox
¼ D

o2C
ox2 ð53Þ
where C is the concentration of a substance, U is the velocity of the flow in the x direction, and D is the diffusion coefficient.
We consider an infinite domain and the following initial condition:
Cðx; t ¼ 0Þ ¼ 1ffiffiffiffiffiffiffiffiffi
10p
p exp � x2

10

� �
ð54Þ
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The exact solution for Eq. (53) with the initial condition Eq. (54) is
Cðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð4Dt þ 10Þ

p exp � ðx� UtÞ2

4Dt þ 10

 !
ð55Þ
We use a lattice size Dx = 1 and time step Dt = 1 for all the simulations. The case study tests different values of PeDx, Cr, and s.
Then, the velocity U and the diffusion coefficient D are obtained from the following relationships:
U ¼ CrDx
Dt

ð56Þ

D ¼ UDx
PeDx

¼ CrDx2

PeDxDt
ð57Þ
The initialization of the particle distribution functions is as follows:
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fiðx; t ¼ 0Þ ¼ f eq
i ðx; t ¼ 0Þ ¼ Cðx; t ¼ 0Þgeq

i : ð58Þ
In each time step, we calculate the deviation of the LBM solution from the analytical solution at each node, i.e.,
et

j ¼ jCaðxj; tÞ � Cnðxj; tÞj. Then, the total error at time t is obtained by summing the nodal error over the entire computational
domain, i.e., et

T ¼
P

jet
j . The computational domain is large enough to ensure that the concentrations at the extremes are very

close to zero such that no significant error is introduced from the edges.
Fig. 8 shows the numerical results using second-order EDFs for the relaxation times s = 0.51, 0.6, 0.7, 0.8, 0.9, 1, 2, and 3

for PeDx = 50 and Cr = 0.8. By running one thousand time steps, s = 0.51 and 0.7 provide unstable solutions, as we observe in
Fig. 8(a). The unstable solutions are confirmed by Fig. 4, in which the pair PeDx = 50 and Cr = 0.8 lie in the unstable domains
for s = 0.51 and 0.7. On the other hand, the pair PeDx = 50 and Cr = 0.8 gives the module of the eigenvalues of matrix A in Eq.
(50) less than unity for s = 0.6, 0.8, 0.9, 1.0, 2.0, and 3.0 and results in stable solutions (Fig. 8(a)). The stability when s = 0.6,
0.8, 0.9, and 1.0 can be found in Fig. 4. Furthermore, the total errors for relaxation times larger than one greatly increase,
indicating that much more numerical dispersion has been introduced.

None of the relaxation times considered in Fig. 8(a) makes the pair of PeDx = 50 and Cr = 0.8 lie in the non-negativity do-
main except for s = 0.6. This confirms that using negative EDFs does not necessarily lead to unstable solutions.

Fig. 8(b) shows normalized concentration distributions after one thousand time steps. The simulated concentrations are
normalized by dividing concentrations by the maximum value of the exact solution at that time, i.e., CmaxðtÞ ¼
t (Δt)

εT 
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(a) Evolution of total errors for 1,000 time steps with PeDx = 50 and Cr = 0.8 using different s values, 1D case. (b) Normalized concentration results
the exact solutions at 1000, time steps.
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1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð4Dt þ 10Þ

p
, and the normalized horizontal coordinate is obtained by ðx� UtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt þ 10
p

. After normalization, the exact
solutions become space and time invariant.

Fig. 8(b) shows that numerical dispersion greatly increases for relaxation times larger than one, i.e., the greater the
numerical dispersion, the greater the total error (Fig. 8(a)). Based on Fig. 8, we find that the most accurate solution is ob-
tained for values of the relaxation time s � 0.8. However, selecting s = 0.8 does not always ensure stability.

Fig. 9 compares the total errors and solutions after 1000 time steps using linear and second-order EDFs for PeDx = 10 and
Cr = 0.15. None of the pairs of PeDx = 10 and Cr = 0.15 using the s values in Fig. 9 lies in the non-negativity domains of linear
and second-order EDFs except for s = 0.6. The second-order EDFs produce more accurate solutions and have much less
numerical dispersion than the linear EDFs. Moreover, when using linear EDFs the numerical dispersion increases as s in-
creases. On the other hand, second-order EDFs introduce the least numerical dispersion for s = 0.8.

Fig. 10 shows the results after 100,000 time steps for PeDx = 50, Cr = 0.05, and s = 0.9 using second-order EDFs. Based on
Fig. 4(b) this set of parameters indicates a stable solution. The stable solution is also confirmed in Fig. 10(a), where the total
error gradually reaches a peak and then starts decreasing. This behavior distinguishes stable solutions from unstable solu-
tions that exhibit exponentially increasing errors as shown in Fig. 8. Fig. 10(b) presents normalized concentrations at 103,
104, and 105 time steps against the exact solutions. The degree of dispersive behavior reflects the magnitude of total errors
in Fig. 10(a).
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Fig. 9. Comparison between linear (figures (a) and (c)) and second-order (figures (b) and (d)) EDFs for 1D transport problem. PeDx = 10 and Cr = 0.15. Figures
(a) and (b): evolution of errors. Figures (c) and (d): normalized concentration distribution after 1000 time steps. LBM solutions (dashed lines); exact solution
(solid lines).



Time Steps

εT 

(X-Ut)(4Dt+10)−1/2

-4 -2 0 2
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t=105Δt

t=103Δt
t=104Δt

t=105Δt

t=103Δt
t=104Δt

Analytical solution
LBM

0 20,000 40,000 60,000 80,000 100,000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5a

b

(π
(4
D
t+
10
))
1/
2 C

Fig. 10. (a) Evolution of total error for 100,000 time steps for PeDx = 50, Cr = 0.05, and s = 0.9, 1D case. (b) Normalized concentrations at 1000, 10,000, and
100,000 time steps.
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6.2. Two-dimensional mass transport in uniform flow

This case considers the mass transport of a conservative solute in a two-dimensional infinite domain. The flow field is
considered uniform and constant. The initial condition is
Cðx; y; t ¼ 0Þ ¼ 1
10p

exp � x2 þ y2

10

� �
ð59Þ
The exact solution for this problem with the initial condition Eq. (59) is
Cðx; y; tÞ ¼ 1
pð4Dt þ 10Þ exp �ðx� UtÞ2 þ ðy� VtÞ2

4Dt þ 10

 !
ð60Þ
where U and V are constant velocities along the x and y directions. The initialization of the particle distribution functions
used is as follows:
fiðx; y; t ¼ 0Þ ¼ f eq
i ðx; y; t ¼ 0Þ ¼ Cðx; y; t ¼ 0Þgeq

i ð61Þ



Fig. 11. (a) Evolution of total errors for PeDx = 20, Cr = 0.5, and a = 22.5� using D2Q9 with second-order EDFs; (b) analytic solution; (c)–(h) normalized
concentration distributions after 500 time steps.
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The total error is calculated as in the one-dimensional case. We use a square lattice with Dx = Dy = 1 and time step Dt = 1
for all the simulations. The second-order EDFs are considered. The case study is specified providing the values of PeDx, Cr, and
s. Then, the velocity u = (U,V) is obtained from juj = CrDx/Dt, U = jujcosa, and V = jujsina, and the diffusion coefficient D is
obtained from Eq. (57).

This case tests the stability of the solutions with relaxation times s = 0.51, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 when
PeDx ¼ 20, Cr = 0.5 and a = 22.5�. None of these s values places the pair PeDx ¼ 20 and Cr = 0.5 in the non-negativity domain.
Fig. 6(b) implies stable solutions for s = 0.6, 0.8, 0.9, and 1.0, and unstable solutions for s = 0.51 and 0.7. Moreover, the mod-
ule of the eigenvalue of the matrix A in Eq. (50) is less than unity for s = 2 and 3. The numerical results in Fig. 11 confirm
these implications.

Fig. 11(a) shows the evolution of the total errors for each case up to 500 time steps. Unstable solutions for s = 0.51 and 0.7
are obvious. Fig. 11(b)–(h) shows the normalized concentration distribution after five hundred time steps for the analytical
solution (Fig. 11(b)) and the LBM results (Fig. 11(c)–(h)). In this case, we observe that s = 0.8 provides the best solution, as
occurred in the one-dimensional cases. Moreover, numerical dispersion increases when s is larger than 0.8. While s = 1 pro-
duced a good solution with moderate numerical dispersion (Fig. 11(f)), using s values larger than unity introduced too much
numerical dispersion (Fig. 11(g) and (h)).
7. Conclusions

The dimensionless equilibrium distribution functions (EDFs) facilitate the non-negativity and linear stability analysis of
the LBGK model by reducing variables to four collective parameters: the scaled Peclet number, the Courant number, the sin-
gle relaxation time and the flow direction. Although dedicated to analyzing the advection–diffusion equation (ADE), the
dimensionless EDFs are also applicable to delineating non-negativity and stability domains for hydrodynamics equations
by shifting the parameters to Reynolds number and Mach number.

For a given set of parameters (scaled Peclet number, Courant number, and flow directions), there exists a minimum value
of the relaxation time to determine stable solutions. Then, this set of parameters always produces stable solutions for any
values of the relaxation time larger than this minimum value.

The linear stability domains were obtained for three different lattices with linear and second-order EDFs. In all cases, the
linear stability domain covers the non-negativity domain. In other words, non-negativity of the dimensionless EDFs presents
a sufficient condition for the linear stability of the LBGK, but is not a necessary condition since stable solutions can be ob-
tained even if some EDF values are negative. Moreover, the non-negativity becomes a necessary condition when the relax-
ation time is very close to 0.5.

Second-order EDFs have larger stability domains than linear EDFs, which makes the LBGK more likely to be stable if sec-
ond-order EDFs are employed. Furthermore, if both linear and second-order EDFs produce stable solutions using the same set
of parameters, the second-order EDFs result in less numerical dispersion.
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Appendix A. Non-negativity analysis for D1Q3, D2Q5, and D2Q9

A.1. D1Q3 lattice with linear EDFs

The linear dimensionless EDFs for D1Q3 lattice are
geq
1 ¼

1
2

Cr
Pe�Dx

þ Cr cos a
� �

ðA:1Þ

geq
2 ¼

1
2

Cr
Pe�Dx

� Cr cos a
� �

ðA:2Þ

geq
0 ¼ 1� Cr

Pe�Dx

� �
ðA:3Þ
where geq
1 is the dimensionless EDFs for particles moving in the same direction of the flow, and geq

2 is for particles moving in
the opposite direction of the flow. geq

0 P 0 results in Pe�Dx � Cr P 0; and geq
2 P 0 results in 1� Pe�Dx P 0. Therefore, the non-

negativity set is
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SD1Q3
L ¼ ðPe�Dx;CrÞ

Pe�Dx > 0;Cr > 0
Pe�Dx � Cr P 0
1� Pe�Dx P 0

							
8><
>:

9>=
>; ðA:4Þ
A.2. D1Q3 lattice with second-order EDFs

The second-order dimensionless EDFs of D1Q3 lattice are
geq
1 ¼

1
2

Cr
Pe�Dx

þ Cr cos aþ Cr2
� �

ðA:5Þ

geq
2 ¼

1
2

Cr
Pe�Dx

� Cr cos aþ Cr2
� �

ðA:6Þ

geq
0 ¼ 1� Cr

Pe�Dx
þ Cr2

� �
ðA:7Þ
geq
0 P 0 results in Pe�Dx � Cr � Pe�DxCr2 P 0; and geq

2 P 0 results in 1� Pe�Dx þ Pe�DxCr P 0. Therefore, the non-negativity set is
SD1Q3
NL ¼ ðPe�Dx;CrÞ

Pe�Dx > 0;Cr > 0

Pe�Dx � Cr � Pe�DxCr2 P 0
1� Pe�Dx þ Pe�DxCr P 0

							
8><
>:

9>=
>; ðA:8Þ
A.3. D2Q5 lattice with linear EDFs

For a given flow direction a, the linear dimensionless EDFs of D2Q5 lattice are
geq
1 ¼

1
2

Cr
Pe�Dx

þ Cr cos a
� �

ðA:9Þ

geq
2 ¼

1
2

Cr
Pe�Dx

þ Cr sina
� �

ðA:10Þ

geq
3 ¼

1
2

Cr
Pe�Dx

� Cr cos a
� �

ðA:11Þ

geq
4 ¼

1
2

Cr
Pe�Dx

� Cr sina
� �

ðA:12Þ

geq
0 ¼ 1� 2

Cr
Pe�Dx

� �
ðA:13Þ
The following relationships stand for any a 2 ½0;p=4� : geq
1 P geq

3 , geq
2 P geq

4 . Therefore,
SD2Q5
La ¼ ðPe�Dx;CrÞ

Pe�Dx > 0;Cr > 0
1� 2 Cr

Pe�Dx
P 0

Cr
Pe�Dx
� Crki P 0; i ¼ 3;4

								

8>><
>>:

9>>=
>>; ðA:14Þ
where k3 2
ffiffiffi
2
p

=2;1
h i

and k4 2 0;
ffiffiffi
2
p

=2
h i

. The non-negativity set is SD2Q5
L ¼ \a2½0;p=4�S

D2Q5
La , which can be expressed as
SD2Q5
L ¼ ðPe�Dx;CrÞ

Pe�Dx > 0;Cr > 0
1� 2 Cr

Pe�Dx
P 0

Cr
Pe�Dx
� Crk P 0; 8k 2 ½0;1�

								

8>><
>>:

9>>=
>>; ðA:15Þ
which leads to
SD2Q5
L ¼ ðPe�Dx;CrÞ

Pe�Dx > 0;Cr > 0
Pe�Dx � 2Cr P 0
Pe�Dx 6 1

							
8><
>:

9>=
>; ðA:16Þ
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A.4. D2Q9 with linear EDFs

For a given flow direction a, the linear dimensionless EDFs of D2Q5 lattice are
geq
1 ¼

1
3

Cr
Pe�Dx

þ Cr cos a
� �

ðA:17Þ

geq
2 ¼

1
3

Cr
Pe�Dx

þ Cr sina
� �

ðA:18Þ

geq
3 ¼

1
3

Cr
Pe�Dx

� Cr cos a
� �

ðA:19Þ

geq
4 ¼

1
3

Cr
Pe�Dx

� Cr sina
� �

ðA:20Þ

geq
6 ¼

1
12

Cr
Pe�Dx

þ Cr � cosaþ sinað Þ
� �

ðA:21Þ

geq
7 ¼

1
12

Cr
Pe�Dx

� Cr cos aþ sin að Þ
� �

ðA:22Þ

geq
8 ¼

1
12

Cr
Pe�Dx

þ Cr cos a� sin að Þ
� �

ðA:23Þ

geq
0 ¼ 1� 5

3
Cr

Pe�Dx

� �
ðA:24Þ
The following relationships geq
1 P geq

3 , geq
2 P geq

4 , geq
5 P geq

7 and geq
8 P geq

6 are valid for any a 2 [0,p/4]. Therefore, we have
SD2Q9
La ¼ ðPe�Dx;CrÞ

Pe�Dx > 0;Cr > 0
1� 5

3
Cr

Pe�Dx
P 0

Cr
Pe�Dx
� Crki P 0; i ¼ 3;4;6;7

								

8>><
>>:

9>>=
>>; ðA:25Þ
The non-negativity set is SD2Q9
L ¼ \a2½0;p=4�S

D2Q9
La , which can be expressed as:
SD2Q9
L ¼ ðPe�Dx;CrÞ

Pe�Dx > 0;Cr > 0
1� 5

3
Cr

Pe�Dx
P 0

Cr
Pe�Dx
� Crk P 0; 8k 2 ½0;

ffiffiffi
2
p
�

								

8>><
>>:

9>>=
>>; ðA:26Þ
which leads to
SD2Q9
L ¼ ðPe�Dx;CrÞ

Pe�Dx > 0;Cr > 0
3Pe�Dx � 5Cr P 0

Pe�Dx 6
ffiffiffi
2
p

=2

							
8><
>:

9>=
>; ðA:27Þ
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